fondo

Noticias

Hermes en la industria de instrumentos de difracción

1. Función del difractómetro monocristalino: El difractómetro de rayos X de cristal único TD-5000 se utiliza principalmente para determinar la estructura espacial tridimensional y la densidad de nubes electrónicas de sustancias cristalinas como complejos inorgánicos, orgánicos y metálicos, y para analizar la estructura de materiales especiales como maclado, cristales no conmensurables, cuasicristales, etc. Determine el espacio tridimensional preciso (incluyendo longitud de enlace, ángulo de enlace, configuración, conformación e incluso densidad electrónica de enlace) de nuevas moléculas compuestas (cristalinas) y la disposición real de las moléculas en la red; El difractómetro de rayos X de cristal único puede proporcionar información sobre los parámetros de la celda cristalina, el grupo espacial, la estructura molecular del cristal, los enlaces de hidrógeno intermoleculares y las interacciones débiles, así como información estructural como la configuración y conformación molecular. El difractómetro de rayos X de cristal único se utiliza ampliamente en la investigación analítica en cristalografía química, biología molecular, farmacología, mineralogía y ciencia de los materiales. El difractómetro de monocristal de rayos X es un producto de alta tecnología financiado por el Proyecto de Desarrollo de Instrumentos y Equipos Científicos Principales Nacionales del Ministerio de Ciencia y Tecnología de China, dirigido por Dandong Tongda Technology Co., Ltd., que llena el vacío en el desarrollo y la producción de difractómetros de monocristal en China. 2. Características del difractómetro monocristalino: Toda la máquina adopta tecnología de control de controlador lógico programable (PLC); Fácil de operar, sistema de recolección de un clic; Diseño modular, accesorios plug and play, sin necesidad de calibración; Monitoreo en línea en tiempo real a través de pantalla táctil, mostrando el estado del instrumento; Generador de rayos X de alta potencia con un rendimiento estable y confiable; Dispositivo de enclavamiento de puerta de plomo electrónico, doble protección. 3. Precisión del difractómetro de monocristal: Precisión de repetibilidad del ángulo 2 θ: 0,0001 °; Ángulo de paso mínimo: 0,0001 ° Rango de control de temperatura: 100 K-300 K; Precisión de control: ± 0,3 K 4. Instrumento de medición de ángulos utilizado en el difractómetro monocristalino: El uso de la técnica de cuatro círculos concéntricos garantiza que el centro del instrumento de medición de ángulos permanezca inalterado independientemente de cualquier rotación, lo que permite obtener datos con la máxima precisión y una mayor integridad. Los cuatro círculos concéntricos son un requisito indispensable para el escaneo con difractómetros monocristalinos convencionales. 5. Detector bidimensional de alta velocidad utilizado en difractómetros monocristalinos de rayos X: El detector combina las tecnologías clave de conteo de fotones individuales y tecnología de píxeles mixtos para lograr la mejor calidad de datos, a la vez que garantiza un bajo consumo de energía y una refrigeración reducida. Se aplica en diversos campos, como la radiación sincrotrón y las fuentes de luz de laboratorio convencionales, eliminando eficazmente la interferencia del ruido de lectura y la corriente oscura. La tecnología de píxeles mixtos permite detectar rayos X directamente, facilitando la distinción de la señal y proporcionando datos de alta calidad de forma eficiente. 6. Equipos de baja temperatura utilizados en difractómetros monocristalinos de rayos X: Los datos recopilados mediante equipos de baja temperatura producen resultados óptimos. Con la ayuda de estos equipos, se pueden crear condiciones más ventajosas que permitan que los cristales indeseables obtengan resultados óptimos, así como que los cristales ideales los obtengan. Rango de control de temperatura: 100 K ~ 300 K; Precisión de control: ± 0,3 K; Consumo de nitrógeno líquido: 1,1 ~ 2 litros/hora; 7. Accesorio opcional, lente de enfoque de película multicapa: Potencia del tubo de rayos X: 30 W o 50 W, etc. Divergencia: 0,5 ~ 1 mrad; Material del objetivo del tubo de rayos X: objetivo de Mo/Cu; punto focal: 0,5~2 mm.

2025/03/31
LEER MáS
El «superdetector» del mundo microscópico

El espectro de estructura fina de absorción de rayos X (XAFS) es una herramienta poderosa para estudiar la estructura atómica o electrónica local de los materiales, ampliamente utilizada en campos populares como la catálisis, la energía y la nanotecnología. El principio del espectro de estructura fina de absorción de rayos X (XAFS): El espectro de estructura fina de absorción de rayos X se refiere a los espectros de alta resolución cerca de los bordes característicos de los electrones del núcleo atómico que absorben rayos X. Cuando la energía de los rayos X es igual a la energía de excitación de los electrones de la capa interna del elemento medido, estos sufrirán una fuerte absorción, lo que resulta en un límite de absorción (o borde de absorción). Cerca del borde de absorción, debido a la dispersión múltiple y otras razones, el coeficiente de absorción de los rayos X presentará fenómenos oscilatorios, concretamente, la estructura fina. 2. Principales ventajas del espectro de estructura fina de absorción de rayos X (XAFS): (1) El producto de flujo luminoso más alto, con un flujo de fotones superior a 1000000 fotones/segundo/eV y una eficiencia espectral varias veces mayor que otros productos; Obtener una calidad de datos equivalente a la radiación de sincrotrón (2) Excelente estabilidad, la estabilidad de la intensidad de la luz monocromática de la fuente de luz es mejor que 0,1% y la deriva de energía repetida es inferior a 50 meV. (3) El límite de detección del 1%, el alto flujo de luz, la excelente optimización de la trayectoria óptica y la excelente estabilidad de la fuente de luz garantizan que aún se puedan obtener datos EXAFS de alta calidad cuando el contenido de elementos medidos es >1%. 3. Áreas de aplicación de XAFS: Catálisis industrial, materiales de almacenamiento de energía, nanomateriales, toxicología ambiental, análisis cualitativo, análisis de elementos pesados, etc. 4. Características principales de XAFS: (1) Ordenamiento de corto alcance: EXAFS se basa en interacciones de corto alcance y no en el ordenamiento de largo alcance. XAFS permite estudiar la estructura de sistemas desordenados, como centros activos amorfos, líquidos, fundidos y catalizadores. (2) Especificidad del elemento: El método de fluorescencia permite medir muestras de elementos con concentraciones tan bajas como una millonésima. Ajustando la energía incidente de los rayos X, se pueden estudiar las estructuras vecinas de los átomos de diferentes elementos en el mismo compuesto. (3) Características de polarización: Los rayos X polarizados se pueden utilizar para medir ángulos de enlace atómico y estructuras superficiales en muestras orientadas. El espectro de estructura fina de absorción de rayos X, con sus principios únicos, características significativas y amplios campos de aplicación, se ha convertido en una herramienta indispensable e importante en múltiples campos como la ciencia de los materiales, la química catalítica y la investigación energética, proporcionando un fuerte apoyo para la exploración en profundidad de las microestructuras de los materiales y los estados electrónicos.

2025/03/27
LEER MáS
¿Qué tipo de magia científica contiene una pequeña plataforma?

El portamuestras giratorio de un difractómetro de rayos X es un componente clave para el ajuste y la fijación precisos de la posición de la muestra. Esta puede rotar dentro de su propio plano, lo cual facilita la corrección de errores causados ​​por granos gruesos. Para muestras con textura y cristalografía, el portamuestras giratorio garantiza una buena reproducibilidad de la intensidad de difracción y elimina la necesidad de una orientación preferente. Principio de funcionamiento del portamuestras giratorio: Cuando el difractómetro de rayos X está en funcionamiento, los rayos X de alta energía generados por la fuente se irradian sobre la muestra fijada en la platina giratoria. Debido a la estructura cristalina y los parámetros reticulares específicos de la muestra, los rayos X experimentan fenómenos de dispersión, absorción y difracción al interactuar con ella, donde los fenómenos de difracción ocurren según los requisitos de la ecuación de Bragg. El portamuestras giratorio puede girar en ángulos más pequeños según la configuración, lo que permite que la muestra reciba radiación de rayos X en diferentes ángulos y, por lo tanto, obtenga patrones de difracción en diferentes ángulos. De esta manera, el detector puede medir la intensidad de los rayos X tras la difracción de la muestra y convertirla en una señal eléctrica que se transmite al ordenador para el procesamiento de datos. La función principal del portamuestras giratorio es: Método de rotación: eje β (plano de muestra) Velocidad de rotación: 1~60 RPM Ancho de paso pequeño: 0,1º Modo de funcionamiento: Rotación a velocidad constante para escaneo de muestras (paso, continuo) Ventajas del portamuestras giratorio: El portamuestras giratorio puede mejorar la precisión de los datos de difracción: En muestras con formas irregulares de polvo o partículas, la orientación preferida tiende a aparecer durante la preparación convencional de muestras de polvo, lo que provoca desviaciones en la distribución de la intensidad de difracción y afecta la precisión del análisis de los resultados. La rotación de la platina de muestra permite mover la muestra con una forma específica en un espacio adecuado, eliminando así la influencia de la orientación preferida y mejorando así la precisión de los datos de difracción. El portamuestras giratorio se adapta a diversas necesidades de prueba: se adapta a diferentes tipos de instrumentos de medición de ángulos de difracción de rayos X, como instrumentos de medición de ángulos verticales y equipos de difracción de polvo compactos de bajo consumo, entre otros, lo que facilita su aplicación en diversas pruebas. Además, el portamuestras giratorio puede satisfacer los requisitos de diversas muestras y condiciones de prueba mediante el ajuste de parámetros como la velocidad y la dirección. El portamuestras giratorio puede ampliar las capacidades analíticas del instrumento: constantemente se desarrollan y aplican nuevos tipos de etapas de muestra giratorias, como algunas etapas de muestra para análisis de difracción de rayos X electroquímicos in situ, que pueden monitorear y analizar los cambios de materiales en diferentes entornos o condiciones en tiempo real, ampliando las capacidades de análisis de los equipos de difracción de rayos X. En resumen, el portamuestras giratorio en el difractómetro de rayos X es crucial para obtener con precisión información sobre la estructura cristalina de las sustancias. El portamuestras giratorio no solo puede mejorar la precisión de los datos de difracción, sino que también se adapta a diversas necesidades de prueba y amplía las capacidades analíticas del instrumento.

2025/03/14
LEER MáS
¡Misteriosa tecnología negra! ¿Qué tan mágico es el accesorio de medición multifuncional integrado del difractómetro de rayos X?

En el difractómetro de rayos X, los accesorios de medición integrados multifuncionales son un componente crucial que mejora considerablemente la funcionalidad y la flexibilidad del instrumento. Se utilizan para el análisis de películas en placas, bloques y sustratos, y permiten realizar pruebas como la detección de fase cristalina, la orientación, la textura, la tensión y la estructura en el plano de películas delgadas. Descripción básica de los accesorios de medición integrados multifuncionales: Definición: Es un término general para una serie de dispositivos o módulos adicionales utilizados en el difractómetro de rayos X para ampliar las funciones del instrumento, mejorar la precisión y la eficiencia de la medición. Propósito: Estos accesorios tienen como objetivo permitir que el difractómetro de rayos X satisfaga una gama más amplia de necesidades experimentales y proporcione información más completa y precisa sobre la estructura del material. Características funcionales de los accesorios de medición integrados multifuncionales: Realizar pruebas de diagrama polar utilizando métodos de transmisión o reflexión; Las pruebas de estrés se pueden realizar utilizando el método de inclinación paralela o el mismo método de inclinación; Prueba de película delgada (rotación en el plano de la muestra). Características técnicas de los accesorios de medición integrados multifuncionales: Alta precisión: generalmente utilizan tecnología de detección avanzada y sistemas de control para garantizar una alta precisión y repetibilidad de las mediciones. Automatización: muchos accesorios admiten operaciones automatizadas y pueden integrarse perfectamente con el host del difractómetro de rayos X para lograr una medición con un solo clic. Diseño modular: facilita a los usuarios seleccionar y combinar diferentes módulos de accesorios según sus necesidades reales. Áreas de aplicación de los accesorios de medición integrados multifuncionales: Ampliamente utilizado en campos como la ciencia de los materiales, la física, la química, la biología y la geología; Evaluación de estructuras de conjuntos metálicos tales como placas laminadas; Evaluación de la orientación cerámica; Evaluación de la orientación prioritaria del cristal en muestras de película delgada; Ensayos de tensión residual de diversos materiales metálicos y cerámicos (evaluación de resistencia al desgaste, resistencia al corte, etc.); Pruebas de tensión residual de películas multicapa (evaluación del desprendimiento de películas, etc.); Análisis de oxidación superficial y películas de nitruro en materiales superconductores de alta temperatura como películas delgadas y placas metálicas; Vidrio Si, Análisis de películas multicapa sobre sustratos metálicos (películas delgadas magnéticas, películas de endurecimiento de superficies metálicas, etc.); Análisis de materiales de galvanoplastia como materiales macromoleculares, papel y lentes. Los accesorios de medición multifuncionales integrados en el difractómetro de rayos X son clave para mejorar el rendimiento del instrumento. No solo mejoran su funcionalidad, sino que también mejoran la precisión y la eficiencia de la medición, proporcionando a los investigadores métodos de análisis de materiales más completos y profundos. Con el continuo avance tecnológico, estos accesorios seguirán desempeñando un papel importante en el fomento de la investigación científica en campos relacionados para lograr nuevos avances.

2025/03/13
LEER MáS
¿Aún le preocupan las limitaciones de los métodos de esterilización tradicionales?

El irradiador de rayos X genera rayos X de alta energía para irradiar objetos objetivo o tejidos biológicos. La generación de rayos X generalmente se logra acelerando electrones para que colisionen con objetivos metálicos (como tungsteno, cobre, etc.), generando bremsstrahlung y formando haces de rayos X, que luego irradian células o animales pequeños. El irradiador de rayos X se utiliza para diversas investigaciones básicas y aplicadas. Históricamente, se utilizaban irradiadores de isótopos radiactivos, que requerían transportar muestras a una instalación de irradiación central. Sin embargo, hoy en día, se pueden instalar irradiadores de rayos X más pequeños, seguros, simples y de menor costo en los laboratorios para una irradiación conveniente y rápida de células. Varias muestras se pueden irradiar directamente en el laboratorio sin afectar la fertilidad o la seguridad. El irradiador de rayos X es conveniente para el personal que no ha recibido capacitación profesional en rayos X para su uso, y no hay solicitudes de licencia costosas ni costos de seguridad o mantenimiento de la fuente de radiación. El irradiador de rayos X es fácil de operar, seguro, confiable y rentable, y puede reemplazar las fuentes de isótopos radiactivos. 1. Las principales áreas de aplicación del irradiador de rayos X incluyen el campo médico, el campo de la investigación científica, etc. 2. Precauciones de seguridad para equipos de irradiación de rayos X: Protección radiológica: Los operadores deben usar ropa protectora para evitar la exposición prolongada a los rayos X. Mantenimiento del equipo: Inspeccione periódicamente el equipo para garantizar su funcionamiento normal y evitar fugas de radiación. Control de dosis: Controle estrictamente la dosis de irradiación para evitar daños innecesarios a la muestra o al cuerpo humano.

2025/02/28
LEER MáS
Con el respaldo de tecnología de vanguardia, ¡liderando la nueva tendencia en pruebas de la industria!

Principio y aplicación de la máquina de prueba de soldadura por rayos X portátil NDT: La máquina de prueba de soldadura por rayos X portátil NDT es el uso de las propiedades acústicas, ópticas, magnéticas y eléctricas de los materiales para detectar la presencia de defectos o irregularidades en el objeto probado sin dañar o afectar su rendimiento. Proporciona información sobre el tamaño, la ubicación, la naturaleza y la cantidad de defectos. En comparación con las pruebas destructivas, las pruebas no destructivas tienen las siguientes características. La primera es no destructiva, ya que no compromete el rendimiento del objeto detectado durante la prueba; La segunda es integral, como la detección no es destructiva, es necesario realizar una detección 100% integral del objeto probado, que no se puede lograr mediante la detección destructiva; La tercera es integral, y las pruebas destructivas generalmente solo se aplican a las pruebas de materias primas, como tensión, compresión, flexión, etc., comúnmente utilizadas en ingeniería mecánica. Las pruebas destructivas se llevan a cabo en materias primas de fabricación, y para productos terminados y artículos en uso, las pruebas destructivas no se pueden realizar a menos que no estén destinados a continuar sirviendo. Las pruebas no destructivas, por otro lado, no dañan el rendimiento del objeto probado. Por lo tanto, no solo puede realizar pruebas de procesos completos en materias primas de fabricación, procesos intermedios e incluso productos finales, sino también probar equipos en servicio. Características de la máquina de prueba de soldadura por rayos X portátil NDT: El generador de rayos X tiene un volumen pequeño, con un ánodo conectado a tierra y enfriamiento forzado por un ventilador; ◆ Ligero, fácil de transportar y sencillo de operar; Trabajar y descansar en proporción 1:1; Hermosa apariencia y estructura razonable; ◆ Exposición retardada para garantizar la seguridad del operador; El propósito principal de la máquina de prueba de soldadura por rayos X portátil NDT: El objetivo principal del equipo es inspeccionar la calidad del procesamiento y la soldadura de materiales y componentes como cascos de barcos, tuberías, recipientes de alta presión, calderas, aeronaves, vehículos y puentes en sectores industriales como la defensa nacional, la construcción naval, el petróleo, la química, la mecánica, la aeroespacial y la construcción, así como los defectos internos y la calidad inherente de varios metales ligeros, caucho, cerámica, etc.

2025/02/27
LEER MáS
Un potente asistente para mejorar la eficiencia de la investigación y el desarrollo de materiales.

El orientador de cristales de rayos X funciona según el principio de difracción de rayos X. El alto voltaje generado por el transformador de alto voltaje actúa sobre el tubo de rayos X, produciendo rayos X. Cuando los rayos X se irradian sobre la muestra, se produce difracción cuando se satisface la condición de difracción de Bragg (n λ = 2dsin θ). Entre ellas, λ es la longitud de onda de los rayos X, d es el espaciamiento entre los planos atómicos dentro del cristal y θ es el ángulo entre los rayos X incidentes y el plano del cristal. La línea de difracción es recibida por el tubo de conteo y mostrada en el microamperímetro del amplificador. Cuando se utiliza un monocromador, la línea de difracción se monocromatiza y luego es recibida por el contador y mostrada en el microamperímetro del amplificador, mejorando así la precisión de la medición. El orientador de cristales de rayos X puede determinar con precisión y rapidez el ángulo de corte de monocristales naturales y artificiales (cristales piezoeléctricos, cristales ópticos, cristales láser, cristales semiconductores) y está equipado con una máquina de corte para el corte direccional de los cristales mencionados anteriormente. El orientador de cristales de rayos X es un instrumento indispensable para el mecanizado de precisión y la fabricación de dispositivos de cristal. El orientador de cristales de rayos X se utiliza ampliamente en las industrias de investigación, procesamiento y fabricación de materiales cristalinos. El orientador de cristales de rayos X es fácil de operar, no requiere conocimientos profesionales ni técnicas especializadas, muestra el ángulo digitalmente, es fácil de observar y reduce los errores de lectura. La pantalla del instrumento de orientación de cristales de rayos X se puede poner a cero en cualquier posición, lo que facilita la visualización del valor de desviación del ángulo del chip. El instrumento de medición de ángulo dual puede funcionar simultáneamente, lo que mejora la eficiencia. El orientador de cristales de rayos X tiene un integrador especial con amplificación de pico, que mejora la precisión de detección. La integración del tubo de rayos X y el cable de alto voltaje aumenta la confiabilidad del alto voltaje. El detector de alto voltaje adopta un módulo de alto voltaje de CC y una placa de muestra de succión al vacío, lo que mejora la precisión y la velocidad de la medición del ángulo. En general, el orientador de cristales de rayos X es un instrumento de precisión basado en el principio de difracción de rayos X, que proporciona un importante soporte técnico para la investigación de materiales cristalinos y aplicaciones relacionadas al medir con precisión el ángulo de corte de los cristales.

2025/02/25
LEER MáS
Pequeña estatura, gran energía.

El difractómetro de rayos X de sobremesa TDM-20 utiliza un nuevo detector de matriz de alto rendimiento, y la carga de este detector ha mejorado enormemente el rendimiento general de la máquina. El difractómetro de rayos X de sobremesa TDM-20 se utiliza principalmente para el análisis de fases de polvos, sólidos y materiales similares a pastas. El difractómetro de rayos X de sobremesa TDM-20 utiliza el principio de difracción de rayos X para realizar análisis cualitativos o cuantitativos, análisis de la estructura cristalina y otros materiales policristalinos como muestras de polvo y muestras de metal. El difractómetro de rayos X de sobremesa se utiliza ampliamente en industrias como la industria, la agricultura, la defensa nacional, los productos farmacéuticos, los minerales, la seguridad alimentaria, el petróleo, la educación y la investigación científica.

2025/02/17
LEER MáS
Ion de Análisis Eficiente de Materiales

El difractómetro de rayos X de alta resolución TD-3700 está equipado con una variedad de detectores de alto rendimiento, como detectores de matriz unidimensional de alta velocidad, detectores bidimensionales, detectores SDD, etc. El difractómetro de rayos X TD-3700 integra análisis rápido, operación conveniente y seguridad para el usuario. La arquitectura de hardware modular y el sistema de software personalizado logran una combinación perfecta, lo que hace que su tasa de falla sea extremadamente baja, el rendimiento antiinterferencia sea bueno y garantiza un funcionamiento estable a largo plazo de la fuente de alimentación de alto voltaje. El difractómetro de rayos X TD-3700 puede aumentar la intensidad del cálculo de difracción en decenas de veces o más, obtener patrones de difracción completos de alta sensibilidad y alta resolución y una mayor intensidad de conteo en un período de muestreo más corto, y también admite el escaneo de datos de transmisión. La resolución del modo de transmisión es mucho mayor que la del modo de difracción, lo que es adecuado para el análisis estructural y otros campos. El modo de difracción tiene fuertes señales de difracción y es más adecuado para la identificación de fase de rutina en el laboratorio.

2025/02/13
LEER MáS
Abre la misteriosa puerta al mundo microscópico.

Los accesorios de fibra se prueban para determinar su estructura cristalina única mediante el método de difracción (transmisión) de rayos X. Pruebe la orientación de la muestra en función de datos como la textura de la fibra y el ancho de medio pico.

2025/02/10
LEER MáS
El nuevo favorito en el ámbito educativo

El analizador de cristales de rayos X de la serie TDF es un instrumento analítico a gran escala y un instrumento de rayos X que se utiliza para estudiar la microestructura interna de los materiales. Se utiliza principalmente para la orientación de monocristales, la inspección de defectos, la determinación de parámetros de red, la determinación de la tensión residual, el estudio de la estructura de placas y varillas, el estudio de la estructura de sustancias desconocidas y las dislocaciones de monocristales.

2025/02/08
LEER MáS
Explorando el "Microscopio" del Mundo de Cristal

El difractómetro monocristal de rayos X TD-5000 se utiliza principalmente para determinar la estructura espacial tridimensional y la densidad de nubes de electrones de sustancias cristalinas como complejos inorgánicos, orgánicos y metálicos, y para analizar la estructura de materiales especiales como maclado, cristales no conmensurables, cuasicristales, etc. Determine el espacio tridimensional preciso (incluyendo longitud de enlace, ángulo de enlace, configuración, conformación e incluso densidad de electrones de enlace) de nuevas moléculas compuestas (cristalinas) y la disposición real de las moléculas en la red; Puede proporcionar información sobre los parámetros de la celda cristalina, el grupo espacial, la estructura molecular del cristal, el enlace de hidrógeno intermolecular y las interacciones débiles, así como información estructural como la configuración y conformación molecular. El difractómetro monocristal de rayos X se utiliza ampliamente en la investigación analítica en cristalografía química, biología molecular, farmacología, mineralogía y ciencia de los materiales. El difractómetro de rayos X de cristal único es un producto de alta tecnología en el marco del Proyecto Nacional de Desarrollo de Instrumentos y Equipos Científicos Principales del Ministerio de Ciencia y Tecnología, dirigido por Dandong Tongda Technology Co., Ltd., que llena el vacío en el desarrollo y la producción de difractómetros de rayos X de cristal único en China.

2025/02/06
LEER MáS
Obtenga el último precio? Le responderemos lo antes posible (dentro de las 12 horas)
This field is required
This field is required
Required and valid email address
This field is required
This field is required