fondo

Noticias

Diga adiós a las limitaciones tradicionales y embárquese en la era de la experimentación inteligente.

Comprender los cambios en la estructura cristalina de las muestras durante el calentamiento a alta temperatura y los cambios en la disolución mutua de diversas sustancias durante dicho calentamiento. El dispositivo de alta temperatura in situ es un dispositivo experimental utilizado para la caracterización in situ de materiales en condiciones de alta temperatura, principalmente para estudiar procesos dinámicos como cambios en la estructura cristalina, transiciones de fase y reacciones químicas de los materiales durante el calentamiento a alta temperatura. A continuación, se presenta una introducción detallada sobre parámetros técnicos, escenarios de aplicación y precauciones: Más, Parámetros técnicos de los accesorios de alta temperatura in situ 1. Rango de temperatura de los accesorios de alta temperatura in situ Ambiente de gas inerte/vacío: La temperatura máxima puede alcanzar los 1600 ℃. Entorno estándar: Temperatura ambiente hasta 1200 ℃ (como se proporciona en el accesorio TD-3500 XRD). 2. Precisión del control de temperatura de los accesorios de alta temperatura in situ: generalmente ± 0,5 ℃ (como los accesorios de alta temperatura in situ), y la precisión de algunos equipos por encima de 1000 ℃ es ± 0,5 ℃. 3. Materiales de ventanas y métodos de enfriamiento para fijaciones de alta temperatura in situ Material de la ventana: Película de poliéster (resistente a temperaturas de 400 ℃) o lámina de berilio (espesor 0,1 mm), utilizada para la penetración de rayos X. Método de enfriamiento: El enfriamiento por circulación de agua desionizada garantiza un funcionamiento estable del equipo en condiciones de alta temperatura. 4. Control de atmósfera y presión de accesorios de alta temperatura in situ: Admite gases inertes (como Ar, N₂), vacío o ambientes atmosféricos y algunos modelos pueden soportar presiones inferiores a 10 bar. El caudal de gas atmosférico se puede ajustar (0,7-2,5 L/min), adecuado para entornos con gases corrosivos. Más, Escenarios de aplicación de accesorios de alta temperatura in situ 1. Investigación de materiales sobre fijaciones de alta temperatura in situ Analizar los cambios en la estructura cristalina (como la transición de fase del platino) y los procesos de transición de fase (como la fusión y la sublimación) a altas temperaturas. Estudiar las reacciones químicas de los materiales a altas temperaturas, como la disolución y la oxidación. 2. Adaptabilidad de los equipos de fijación in situ para altas temperaturas Se utiliza principalmente en difractómetros de rayos X (XRD), como TD-3500, TD-3700, etc. También se puede utilizar para pruebas de tracción in situ mediante microscopía electrónica de barrido (SEM), con conexiones de brida personalizadas requeridas. Precauciones para el uso de accesorios de alta temperatura in situ 1. Requisitos de muestra para accesorios de alta temperatura in situ Es necesario comprobar previamente la estabilidad química de la muestra en el rango de temperatura objetivo para evitar su descomposición en ácidos/bases fuertes o la formación de enlaces cerámicos. La forma de la muestra debe cumplir con los requisitos del accesorio (por ejemplo, grosor de 0,5 a 4,5 mm y diámetro de 20 mm). 2. Procedimientos operativos experimentales para accesorios de alta temperatura in situ Es necesario controlar la velocidad de calentamiento (p. ej., máximo 200 °C/min a 100 °C) para evitar el sobrecalentamiento y dañar el equipo. Tras el experimento, la muestra debe enfriarse a temperatura ambiente para evitar daños estructurales.

2025/04/25
LEER MáS
Una máquina se adapta a múltiples escenarios, duplicando la eficiencia experimental

La platina de muestra multifuncional es un equipo experimental altamente integrado que se utiliza principalmente en los campos de la ciencia de los materiales, la fabricación de semiconductores, el análisis de microscopía electrónica, etc. Sus características principales son el diseño modular, la integración multifuncional y el control de alta precisión. Más, Las funciones principales y características estructurales de la etapa de muestra multifuncional 1. Diseño modular de platina de muestra multifuncional: Se logran múltiples funciones a través de diferentes combinaciones de módulos, como el módulo de acoplamiento de rotación automática (velocidad de 0 a 20 revoluciones por minuto, con límite cero), el módulo de elevación (carrera estándar de 50 mm/100 mm, personalizable), el módulo de calentamiento (temperatura máxima de hasta 1100 ℃), etc. Admite conexión de fuente de alimentación CC/RF para satisfacer las necesidades de crecimiento de película delgada, limpieza de muestras o formación de película auxiliar. 2. Control de alta precisión y sensores para platina de muestra multifuncional: Equipado con sensores de temperatura, presión y otros, monitoreo en tiempo real de los parámetros ambientales de la muestra y ajuste de calefacción, enfriamiento y otras operaciones a través del sistema de control. Algunos modelos integran módulos deflectores neumáticos para una fácil operación. 3. Compatibilidad y adaptabilidad de la platina de muestra multifuncional: Adecuado para probar muestras irregulares, como polvos traza, materiales en láminas y muestras de gran tamaño, evitando el daño causado por el corte o pulido tradicionales. Admite tamaños de muestra inferiores a 6 pulgadas e interfaces de brida personalizables. Más, Campos de aplicación del soporte de muestra multifuncional 1. Tecnología de película delgada para etapa de muestra multifuncional: se utiliza para tecnologías avanzadas de crecimiento de película delgada como MBE (epitaxia de haz molecular), PLD (deposición láser pulsada), pulverización catódica por magnetrón, así como recocido de sustrato, desgasificación a alta temperatura y otros procesos. 2. Análisis de microscopía electrónica de platina de muestra multifuncional: Microscopio electrónico de barrido de campo frío: Fije la muestra con tornillos largos y ajuste la conductividad con arandelas de latón compatibles. Sistema TEM/FIB: integra delaminación in situ, pruebas con nanosonda y análisis TEM para evitar la contaminación o daños causados ​​por la transferencia de muestras. 3. Análisis de fallas de la etapa de muestra multifuncional: integración de procesos de análisis, pruebas eléctricas y de extracción de sitios atómicos en sistemas FIB y TEM para mejorar la tasa de éxito y la eficiencia. Más, Ventajas técnicas de la platina de muestra multifuncional 1. Integración y automatización de la platina de muestra multifuncional: reduce la complejidad de la operación manual a través del diseño modular, admite el movimiento general y el posicionamiento preciso en el entorno de vacío. 2. Alta confiabilidad de la etapa de muestra multifuncional: uso de interfaces de brida estándar (como CF50/CF40) para garantizar el sellado y la compatibilidad. 3. Personalización de la mesa de muestra multifuncional: el material de calentamiento, la longitud de la carrera y el tipo de soporte de muestra (como tipo de bayoneta de 3 mordazas, tipo de horquilla inferior) se pueden seleccionar según las necesidades. En general, la platina de muestra multifuncional es un equipo clave para la investigación y el microanálisis de materiales, comúnmente utilizado en instrumentos de difracción de rayos X. Su valor reside en su integración funcional, flexibilidad operativa y adaptabilidad a requisitos experimentales complejos. La selección específica debe ajustarse a los módulos y parámetros de rendimiento correspondientes según los escenarios de aplicación reales (como tecnología de película delgada, análisis de microscopía electrónica o análisis de fallos).

2025/04/24
LEER MáS
¿Lo necesitas para probar tu batería?

Funciones principales y escenarios de aplicación de los accesorios de batería originales Posicionamiento funcional de los accesorios de batería originales: 1. Implementar pruebas en tiempo real durante los procesos de carga y descarga de la batería (como XRD, observación óptica, etc.) para evitar la pérdida de datos o la contaminación de la muestra causada por el desmontaje tradicional. 2. Simule el entorno de trabajo de baterías reales, admita control de temperatura, adición de electrolitos y garantía de sellado. Escenarios de aplicación típicos de los accesorios de batería originales: 1. Pruebas in situ de XRD: analizan los cambios de fase cristalina de los materiales de los electrodos (como LiFePO4) durante los procesos de carga y descarga. 2.Observación óptica in situ: Observe la reacción de la superficie del electrodo a través de una ventana de berilio (película de poliéster). 3. Prueba de alto rendimiento: admite la investigación del rendimiento de la batería en múltiples condiciones (temperatura, presión, electrolito). 4. Ampliamente utilizado en sistemas electroquímicos que contienen carbono, oxígeno, nitrógeno, azufre, complejos incrustados en metales, etc.    Composición estructural y propiedades de los materiales de los accesorios de batería originales 1.Componentes principales de los accesorios de batería originales: Cubierta de aislamiento inferior: hecha principalmente de cerámica de alúmina o material de politetrafluoroetileno, incluye cámara de instalación y canal de flujo de refrigerante, lo que favorece el control de temperatura. Cubierta conductora superior: diseñada con orificios pasantes, atornillada a la cubierta aislante inferior para formar una ruta de corriente. Electrodo inferior: incluye placa superior y columna de soporte, fijado mediante compresión de resorte mariposa, simplificando el proceso de montaje. Ventana de berilio (película de poliéster): diámetro 15 mm (personalizable), espesor 0,1 mm (personalizable), utilizada para penetración de rayos X u observación óptica. 2. Mejora técnica de los accesorios de batería originales: Ensamblaje formal: reemplaza los métodos invertidos tradicionales, simplifica el proceso de operación y reduce el impacto de la compresión en los materiales del separador y del electrodo positivo. Refrigeración y calefacción: La cubierta de aislamiento inferior integra un canal de refrigerante o una tubería de cable de resistencia, que admite un control de temperatura de -400 ℃. Diseño de sellado: El resorte de mariposa comprime y fija el electrodo inferior y coopera con el flujo de aire del asiento de instalación para soplar y evitar la formación de escarcha y hielo. Ventajas técnicas de los accesorios de batería originales 1. Operación conveniente de los accesorios de batería originales: La estructura formal reduce el tiempo de operación dentro de la guantera y disminuye la complejidad del montaje. El diseño modular de componentes (como ventanas de berilio reemplazables y mangas de aislamiento) mejora la eficiencia del mantenimiento. 2. Parámetros de rendimiento: Rango de prueba: Rango de temperatura de 0,5 a 160 ℃, resistencia a temperaturas de hasta 400 ℃. Sellado: favorece el almacenamiento estable a largo plazo del electrolito para evitar fugas. Compatibilidad: Adecuado para difractómetros de rayos X y otros equipos.

2025/04/22
LEER MáS
¿Cuánto sabes sobre los pequeños objetos que tienen grandes efectos?

1、Principales funciones y aplicaciones de los accesorios de fibra: Accesorios de fibra del difractómetro de rayos X: Utilizando el método de difracción (transmisión) de rayos X, se prueban la orientación y la estructura cristalina de la muestra analizando la cristalinidad, el ancho de medio pico y otros datos de la fibra. Accesorios de fibra para espectrómetro infrarrojo por transformada de Fourier: incluye microscopio, reflectancia difusa, reflectancia total atenuada (ATR) y otros accesorios, utilizados para identificación de composición de fibra, determinación de relación de mezcla, análisis de fibra individual, etc. Por ejemplo, el microinfrarrojo puede identificar fibras individuales de dos componentes, y los accesorios ATR son adecuados para análisis de estructura de superficie sin la necesidad de preparación de muestra. 2、Tipos y características comunes de los accesorios de fibra: Accesorios específicos para difractómetros de rayos X: como accesorios de difracción de ángulo pequeño, accesorios de película delgada de luz paralela, accesorios in situ para temperaturas altas/medias-bajas, etc., adecuados para diferentes requisitos de prueba. Algunos instrumentos incluyen funciones como cambiadores automáticos de muestras y mesas de muestras giratorias para mejorar la eficiencia de las pruebas. Accesorios para espectrómetro infrarrojo: incluye herramientas de muestreo de transmisión (como el dispositivo de compresión de bromuro de potasio), accesorios microinfrarrojos (para análisis de fibras individuales), andamios de reflexión difusa (adecuados para fibras opacas) y accesorios ATR (para pruebas rápidas no destructivas), etc. 3、 Escenarios de aplicación típicos de los accesorios de fibra: Investigación de materiales: Analizar la estructura cristalina y la orientación molecular de fibras naturales (algodón, lino, etc.) y fibras químicas (poliéster, acrílico, etc.). Inspección de calidad industrial: se utiliza para determinar la proporción de mezcla de textiles y optimizar la tecnología de procesamiento de fibras (como el monitoreo de la orientación de la tracción). Campo de investigación: Estudiar el dicroísmo de polímeros, orientación del estiramiento del microárea de la fibra, etc. En resumen, los accesorios de fibra son herramientas indispensables para el análisis de materiales y las pruebas de fibra, y su desarrollo se basa en los avances en la tecnología de instrumentos (como XRD y FTIR) y la innovación en el diseño de accesorios. La selección específica depende de los requisitos de las pruebas (como la estructura cristalina y la identificación de la composición) y del modelo del instrumento.

2025/04/21
LEER MáS
Expertos ocultos en el campo de la medición

El accesorio de medición integrado multifuncional se utiliza para analizar películas en placas, bloques y sustratos, y puede realizar pruebas como detección de fase cristalina, orientación, textura, tensión y estructura en el plano de películas delgadas. Características funcionales de los accesorios de medición integrados multifuncionales: Realizar pruebas de diagrama polar utilizando métodos de transmisión o reflexión; Las pruebas de estrés se pueden realizar utilizando el método de inclinación paralela o el mismo método de inclinación; Prueba de película delgada (rotación de muestras en el plano) Áreas de aplicación de los accesorios de medición integrados multifuncionales: Evaluación de estructuras de ensamblajes metálicos tales como placas laminadas; Evaluación de la orientación cerámica; Evaluación de la orientación prioritaria del cristal en muestras de película delgada; Ensayos de tensión residual de diversos materiales metálicos y cerámicos (evaluación de resistencia al desgaste, resistencia al corte, etc.); Pruebas de tensión residual de películas multicapa (evaluación del desprendimiento de películas, etc.); Análisis de oxidación superficial y películas de nitruro en materiales superconductores de alta temperatura como películas delgadas y placas metálicas; Vidrio Si, Análisis de películas multicapa sobre sustratos metálicos (películas delgadas magnéticas, películas de endurecimiento de superficies metálicas, etc.); Análisis de materiales de galvanoplastia como materiales macromoleculares, papel y lentes. Especificaciones técnicas de los accesorios de medición integrados multifuncionales: Distancia mínima de paso del eje alfa (inclinación): 0,001 °/paso, rango dinámico: - 45°-90° Paso mínimo del eje β (rotación): 0,001°/paso, rango dinámico: 0° -360° Distancia mínima de paso en el eje z: 0,001 °/paso, rango dinámico: 0-10 mm Tamaño de la muestra: diámetro máximo de 100 mm, espesor ajustable.

2025/04/18
LEER MáS
Liderando la nueva era

El espectrómetro de estructura fina de absorción de rayos X (XAFS) es una herramienta poderosa para estudiar la estructura atómica o electrónica local de los materiales, ampliamente utilizada en campos populares como la catálisis, la energía y la nanotecnología. El principio básico del espectrómetro de estructura fina de absorción de rayos X (XAFS) es que cuando la energía de los rayos X resuena con la energía de una capa electrónica interna de un elemento en la muestra, se excita un aumento repentino de electrones para formar un espectro continuo, que se llama el borde de absorción. Cerca del borde de absorción, a medida que aumenta la energía de los rayos X, la tasa de absorción disminuye monótonamente a medida que aumenta la profundidad de penetración de los rayos X. Cuando el espectro se extiende más allá de un borde específico, se pueden observar estructuras finas, donde las regiones de absorción de rayos X cerca del borde (XANES) aparecen tan pronto como los picos y hombros con un ancho superior a 20 a 30 electronvoltios pasan por el punto de inicio del borde. La estructura fina ubicada en el lado de alta energía del borde donde la energía decae a varios cientos de electronvoltios se llama Estructura Fina de Absorción de Rayos X (XAFS). Las principales características del espectrómetro de estructura fina de absorción de rayos X (XAFS) son: Sensibilidad al ordenamiento de corto alcance: Depende del ordenamiento de corto alcance y no del de largo alcance, lo que permite medir una amplia gama de muestras. Puede utilizarse para materiales amorfos, líquidos, fundidos, centros activos de catalizadores, proteínas metálicas, etc., así como para estudios estructurales de átomos de impurezas en cristales. Fuertes características elementales: el borde de absorción de rayos X tiene características elementales y, para los átomos de diferentes elementos en la muestra, se puede estudiar la estructura atómica vecina de diferentes elementos en el mismo compuesto ajustando la energía de rayos X incidente. Alta sensibilidad: el método de fluorescencia se puede utilizar para medir muestras de elementos con concentraciones tan bajas como una millonésima. Adquisición integral de información estructural: capaz de proporcionar parámetros que determinan la estructura local, como la distancia entre los átomos absorbentes y los átomos vecinos, el número y tipo de estos átomos y el estado de oxidación de los elementos absorbentes. La preparación de la muestra es sencilla: no se requiere un solo cristal y, en las condiciones experimentales, el tiempo de recolección de datos es relativamente corto. Con una fuente de rayos X de sincrotrón, la medición de una línea espectral suele tardar solo unos minutos. Las principales ventajas del espectrómetro de estructura fina de absorción de rayos X (XAFS) son: Ventaja principal: producto con el mayor flujo luminoso Flujo de fotones superior a 1000000 fotones/segundo/eV, con una eficiencia espectral varias veces superior a la de otros productos; Obtenga una calidad de datos equivalente a la radiación de sincrotrón Excelente estabilidad: La estabilidad de la intensidad de la luz monocromática de la fuente de luz es mejor que el 0,1% y la deriva de energía durante la recolección repetida es inferior a 50 meV. Límite de detección del 1%: El alto flujo luminoso, la excelente optimización de la trayectoria óptica y la excelente estabilidad de la fuente de luz garantizan que aún se puedan obtener datos EXAFS de alta calidad cuando el contenido de elementos medidos es >1%. 4. Áreas de aplicación del espectrómetro de estructura fina de absorción de rayos X (XAFS): Campo energético: como la investigación sobre baterías de litio y otros materiales de baterías secundarias, la investigación de celdas de combustible, la investigación de materiales de almacenamiento de hidrógeno, etc. XAFS se puede utilizar para obtener la concentración, el estado de valencia, el entorno de coordinación y los cambios dinámicos de los átomos centrales durante los ciclos de descarga de carga y las reacciones electroquímicas. Campo de catálisis: se utiliza para investigaciones en catálisis de nanopartículas, catálisis de un solo átomo, etc. Obtener la morfología del catalizador sobre el soporte, la forma de interacción con el soporte y sus cambios durante el proceso catalítico a través de XAFS, así como las estructuras vecinas de iones metálicos con contenido extremadamente bajo. En el campo de la ciencia de los materiales, el espectrómetro de estructura fina de absorción de rayos X (XAFS) se utiliza para la caracterización de diversos materiales, el estudio de sistemas complejos y materiales estructurales desordenados, la investigación de isótopos radiactivos, el estudio de propiedades relacionadas con materiales de superficie e interfaz y el estudio de cambios dinámicos en materiales. En el campo de la geología, el espectrómetro de estructura fina de absorción de rayos X (XAFS) se puede utilizar para el análisis del estado de valencia de los elementos de los materiales minerales en la investigación geológica. Campo ambiental: XES se puede utilizar para el análisis del estado de valencia de elementos Cr/As, etc. En el campo de la radioquímica, el espectrómetro de estructura fina de absorción de rayos X (XAFS) se puede utilizar para el análisis del estado de valencia de elementos Ce, U, etc. El espectrómetro de estructura fina por absorción de rayos X (XAFS) desempeña un papel fundamental en la investigación científica moderna gracias a su singular principio de funcionamiento, sus importantes características y sus amplios campos de aplicación. Proporciona un medio eficaz para profundizar en la comprensión de la microestructura y el estado químico de la materia, impulsando el desarrollo y el progreso de múltiples disciplinas.

2025/04/17
LEER MáS
Detección precisa de fallas para garantizar la seguridad industrial

El propósito principal de la máquina de prueba de soldadura por rayos X portátil NDT es inspeccionar la calidad del procesamiento y soldadura de materiales y componentes tales como cascos de barcos, tuberías, recipientes de alta presión, calderas, aeronaves, vehículos y puentes en sectores industriales como la defensa nacional, la construcción naval, el petróleo, la química, la mecánica, la industria aeroespacial y la construcción, así como los defectos internos y la calidad inherente de varios metales ligeros, caucho, cerámica, etc. Principio y aplicación de la máquina de prueba de soldadura por rayos X portátil NDT: Las máquinas portátiles de ensayos de soldadura por rayos X para END utilizan las propiedades acústicas, ópticas, magnéticas y eléctricas de los materiales para detectar la presencia de defectos o irregularidades en el objeto analizado, sin dañar ni afectar su rendimiento. Proporcionan información como el tamaño, la ubicación, la naturaleza y la cantidad de los defectos. En comparación con los ensayos destructivos, presentan las siguientes características: la primera es no destructiva, ya que no compromete el rendimiento del objeto detectado durante la prueba; la segunda es exhaustiva, ya que la detección no es destructiva, lo que requiere una detección 100% completa del objeto analizado, lo cual no se puede lograr mediante la detección destructiva; la tercera es exhaustiva, y los ensayos destructivos generalmente solo se aplican a las pruebas de materias primas, como las de tracción, compresión, flexión, etc., comúnmente utilizadas en la ingeniería mecánica. Los ensayos destructivos se realizan en materias primas de fabricación, mientras que en el caso de productos terminados y artículos en uso, no se pueden realizar a menos que no se vayan a utilizar. Por otro lado, no perjudican el rendimiento del objeto analizado. Por lo tanto, no solo puede realizar pruebas de proceso completo en materias primas de fabricación, procesos intermedios e incluso productos finales, sino también probar equipos en servicio. Características de la máquina de prueba de soldadura por rayos X portátil NDT: El generador de rayos X tiene un volumen pequeño, con un ánodo conectado a tierra y refrigeración forzada mediante un ventilador; ◆ Ligero, fácil de transportar y sencillo de operar; Trabajar y descansar en proporción 1:1; Hermosa apariencia y estructura razonable; ◆ Exposición retardada para garantizar la seguridad del operador; Rango de inspección visual de la máquina de prueba de soldadura por rayos X portátil NDT 1. Inspección de defectos superficiales en las soldaduras. Verifique la calidad de la soldadura, como grietas superficiales, penetración incompleta y fugas en la costura. 2. Comprobación del estado. Compruebe si hay grietas superficiales, desprendimientos, tirones, arañazos, abolladuras, protuberancias, manchas, corrosión u otros defectos. 3. Inspección de la cavidad interna. Cuando ciertos productos (como bombas de engranajes sinfín, motores, etc.) estén en funcionamiento, realice pruebas endoscópicas según los requisitos técnicos especificados. 4. Inspección del ensamblaje. Cuando existan requisitos y necesidades, utilice el mismo videoendoscopio industrial 3D para inspeccionar la calidad del ensamblaje. Tras completar el ensamblaje o un proceso específico, verifique cada componente. Compruebe si la posición de ensamblaje de los componentes cumple con los requisitos de los planos o las especificaciones técnicas y si existe algún defecto de ensamblaje. 5. Inspección de exceso de artículos. Compruebe si hay residuos, objetos extraños u otros residuos dentro de la cavidad del producto.

2025/04/15
LEER MáS
Excelente opción para pruebas no destructivas

El irradiador de rayos X WBK-01 genera rayos X de alta energía para irradiar células o animales pequeños. Este irradiador se utiliza en diversas investigaciones básicas y aplicadas. Históricamente, se han utilizado irradiadores de isótopos radiactivos, que requieren el transporte de muestras a una instalación central de irradiación. Hoy en día, se pueden instalar en laboratorios irradiadores de rayos X más pequeños, seguros, sencillos y económicos para una irradiación celular rápida y cómoda. Diversas muestras se pueden irradiar directamente en el laboratorio sin afectar la fertilidad ni la seguridad. El irradiador de rayos X es fácil de usar para personal sin formación profesional en rayos X, y no requiere la solicitud de licencias costosas ni costos de seguridad o mantenimiento de la fuente de radiación. Este dispositivo es fácil de operar, seguro, fiable y económico, y puede sustituir a las fuentes de isótopos radiactivos. 1. Principio del irradiador de rayos X: El tubo de rayos X del irradiador genera electrones de alta energía, que producen rayos X al colisionar con el material objetivo (generalmente tungsteno). Los electrones se aceleran mediante un campo eléctrico de alto voltaje para obtener la energía suficiente para generar la longitud de onda e intensidad de rayos X requeridas. Posteriormente, los rayos X se ajustan y optimizan mediante una serie de colimadores, filtros y otros dispositivos, y finalmente se irradian sobre la muestra. Los componentes principales de un irradiador de rayos X son: El irradiador de rayos X incluye principalmente tubos de rayos X, generadores de alto voltaje, circuitos de control, sistemas de refrigeración, dispositivos de protección y salas de muestras. Entre ellos, el tubo de rayos X es el componente principal responsable de la generación de rayos X; el generador de alto voltaje proporciona el alto voltaje y la corriente necesarios para el tubo de rayos X; el circuito de control se utiliza para controlar parámetros como la generación, la intensidad y el tiempo de irradiación de los rayos X; el sistema de refrigeración garantiza que el equipo no sufra daños por sobrecalentamiento durante el funcionamiento; y el dispositivo de protección garantiza la seguridad de los operadores y del entorno de uso. 3. Áreas de aplicación del irradiador de rayos X: El irradiador de rayos X se puede utilizar en el campo de la biología: se puede utilizar para el cultivo celular y la investigación de inhibición de la división, inducción de cambios genéticos, investigación de células madre, irradiación de animales pequeños, investigación de células de tuberculosis, investigación de células sanguíneas, irradiación de trasplantes de médula ósea, inmunidad de trasplantes, terapia inmunosupresora, investigación de sensibilidad a la radiación, investigación de daños en el ADN, etc. El irradiador de rayos X se puede utilizar en el campo médico: en el tratamiento de tumores, se puede utilizar para irradiar localmente el sitio del tumor, matar células cancerosas o inhibir su crecimiento; el irradiador de rayos X también se puede utilizar como un diagnóstico auxiliar para ciertas enfermedades, como ayudar a determinar la condición al observar los cambios de imagen de los tejidos y órganos a través de rayos X. El irradiador de rayos X se puede utilizar en la industria alimentaria: se puede utilizar para la conservación de alimentos por irradiación, matando microorganismos en los alimentos mediante la irradiación de rayos X, inhibiendo la actividad enzimática, extendiendo así la vida útil de los alimentos manteniendo su sabor y contenido nutricional originales. El irradiador de rayos X se puede utilizar en el campo industrial: se puede utilizar para probar y modificar el rendimiento del material, como el tratamiento de reticulación de materiales poliméricos para mejorar su resistencia y estabilidad; también se puede utilizar para pruebas no destructivas para detectar defectos y grietas dentro de los materiales. En resumen, el irradiador de rayos X es un dispositivo científico e industrial importante con amplias perspectivas de aplicación y valor.

2025/04/11
LEER MáS
El misterio mágico del orientador de cristales de rayos X

El orientador de cristales por rayos X es un instrumento indispensable para el mecanizado de precisión y la fabricación de dispositivos cristalinos. Utiliza el principio de difracción de rayos X para determinar con precisión y rapidez el ángulo de corte de monocristales naturales y artificiales (cristales piezoeléctricos, cristales ópticos, cristales láser y cristales semiconductores) y está equipado con una máquina de corte para el corte direccional de dichos cristales. El orientador de cristales por rayos X se utiliza ampliamente en las industrias de investigación, procesamiento y fabricación de materiales cristalinos. 1. Principio del orientador de cristales de rayos X: El orientador de cristales por rayos X utiliza el principio de difracción de rayos X para determinar con precisión y rapidez el ángulo de corte de monocristales naturales y artificiales (cristales piezoeléctricos, cristales ópticos, cristales láser y cristales semiconductores). Equipado con una máquina de corte, el orientador de cristales por rayos X permite el corte direccional de los cristales mencionados y es un instrumento indispensable para el mecanizado de precisión y la fabricación de dispositivos cristalinos. El instrumento de orientación de cristales por rayos X tiene una precisión de medición de ± 30 pulgadas, con pantalla digital y una lectura de 10 pulgadas. Puede medir muestras con un diámetro de 1 a 30 kilogramos y de 2 a 8 pulgadas. Visualización de ángulo: modo digital, precisión de medición de ± 30 pulgadas. 2. Características del orientador de cristales de rayos X: Fácil de operar, no requiere conocimientos profesionales ni habilidades especializadas. El ángulo de la pantalla digital es fácil de observar y reduce los errores de lectura. El monitor se puede poner a cero en cualquier posición para visualizar fácilmente los valores de desviación del ángulo del chip. El instrumento de medición de ángulos dual puede funcionar simultáneamente, lo que mejora la eficiencia. El orientador de cristales de rayos X cuenta con un integrador especial con amplificación de picos, que mejora la precisión de detección. La integración del tubo de rayos X y el cable de alta tensión aumenta la fiabilidad de la alta tensión. El detector de alta tensión adopta un módulo de alta tensión de CC y una placa de muestreo de succión al vacío, lo que mejora la precisión y la velocidad de la medición de ángulos. Los componentes principales de un orientador de cristales de rayos X son: Tubo de radiación: normalmente se utiliza un objetivo de cobre como ánodo y se conecta a tierra, mientras que para el enfriamiento se utiliza enfriamiento por aire forzado. Fuente de alimentación de alto voltaje: proporciona alto voltaje y corriente estables para los tubos de rayos X y es uno de los componentes principales de todo el sistema. Detector: se utiliza para recibir fotones de rayos X difractados y convertirlos en señales eléctricas para su posterior procesamiento y análisis. Goniómetro: se utiliza para medir con precisión el ángulo de rotación de muestras de cristal, determinando así la información de orientación del plano de difracción. Sistema de procesamiento de datos: procesa, analiza y almacena las señales de salida del detector para obtener información sobre la estructura cristalina. 4. Áreas de aplicación del orientador de cristales de rayos X: Ciencia de los materiales: Se utiliza para estudiar las estructuras cristalinas de diversos materiales, incluidos metales, cerámicas, semiconductores, etc. Geología: Se utiliza para identificar tipos de minerales, analizar estructuras rocosas, etc. Química: se utiliza para estudiar la estructura y los cambios de los cristales moleculares. Física: se utiliza para explorar la microestructura y las propiedades físicas de la materia. En resumen, con el progreso continuo y la innovación de la ciencia y la tecnología, se cree que habrá más materiales y tecnologías nuevos aplicados en varios campos en el futuro, promoviendo el desarrollo continuo de la sociedad humana.

2025/04/10
LEER MáS
Abra la puerta a la innovación

El analizador de cristales de rayos X de la serie TDF es un instrumento analítico a gran escala que se utiliza para estudiar la microestructura interna de sustancias. Se utiliza principalmente para la orientación de monocristales, la inspección de defectos, la determinación de parámetros de red, la determinación de tensiones residuales, el estudio de la estructura de placas y barras, el estudio de la estructura de sustancias desconocidas y las dislocaciones de monocristales. Un analizador de cristales de rayos X es un instrumento de precisión que utiliza el principio de difracción de rayos X para analizar y determinar la estructura interna y la composición de sustancias. 1. Principio de funcionamiento del analizador de cristales de rayos X: El analizador de cristales de rayos X se basa en la ley de Bragg, que establece que cuando se irradian rayos X sobre un cristal, se produce difracción en un ángulo específico, formando puntos o picos de difracción. Midiendo los ángulos y las intensidades de estas difracciones, se puede inferir la estructura interna y la composición del cristal. 2. Componentes del analizador de cristales de rayos X: (1) Fuente de rayos X del analizador de cristal de rayos X: un dispositivo que genera rayos X, generalmente un tubo de rayos X, que consta de un filamento, un material objetivo y una fuente de alimentación de alto voltaje. Tubo de rayos X del analizador de cristales de rayos X: Potencia nominal: 2,4KW; Tamaño del enfoque (mm2): Enfoque puntual (1 × 1) Enfoque lineal (1 × 10); Materiales objetivo: Cu, Co, Fe, Cr, Mo, W, etc. Generador de alto voltaje del analizador de cristales de rayos X (controlado por PLC importado): Voltaje del tubo: 10-60KV; Corriente del tubo: 2-60 mA; Estabilidad de la tensión del tubo y de la corriente del tubo ≤ ± 0,005%; Potencia nominal de salida: 3KW. Cable de alto voltaje para analizador de cristales de rayos X: Tensión dieléctrica ≥ 100KV; Longitud: 2M. (2) El cristal espectral del analizador de cristales de rayos X: se utiliza para separar rayos X de diferentes longitudes de onda, es un componente clave para lograr la separación espectral. (3) Detector de cristal analizador de rayos X: se utiliza para detectar los rayos X dispersos por la muestra y convertirlos en señales eléctricas para su posterior procesamiento. (4) Instrumento de medición de ángulos del analizador de cristal de rayos X: un instrumento utilizado para la medición precisa del ángulo de difracción, que es uno de los componentes importantes para garantizar la precisión de la medición. (5) El sistema de control y procesamiento de datos del analizador de cristales de rayos X: se utiliza para controlar todo el proceso de análisis, procesar y analizar los datos recopilados. Los instrumentos modernos suelen estar equipados con software para simplificar el proceso de análisis de datos. 3. Características del analizador de cristales de rayos X: El analizador de cristales de rayos X de la serie TDF adopta una manga de tubo vertical y se pueden utilizar cuatro ventanas simultáneamente. El analizador de cristales de rayos X de la serie TDF incorpora tecnología de control PLC importada, con alta precisión de control y buen rendimiento antiinterferencias, lo que garantiza un funcionamiento fiable del sistema. El PLC controla el interruptor de alto voltaje y la elevación, y también controla automáticamente el tubo de rayos X, prolongando así su vida útil y la del instrumento. 4. Áreas de aplicación del analizador de cristales de rayos X Ciencia de los Materiales: Investigar la estructura cristalina, la transición de fase, los defectos, etc. de los materiales para proporcionar un apoyo importante para el desarrollo de nuevos materiales. Química: involucra la química cristalina, la química medicinal, etc., se puede utilizar para analizar estructuras compuestas, estudiar mecanismos de reacciones químicas, etc. Biología: Se utiliza para el análisis estructural de biomoléculas, diseño y selección de fármacos, etc., y es de gran importancia para comprender los procesos de la vida y los mecanismos de las enfermedades. La ciencia ambiental juega un papel importante en el desarrollo de catalizadores, la caracterización de nanomateriales y el análisis de contaminantes. Geología: La identificación de minerales, la investigación de la génesis de rocas, la geocronología y otras áreas de estudio también dependen de los analizadores de cristales de rayos X. El analizador de cristales de rayos X es un instrumento analítico potente y ampliamente utilizado que desempeña un papel fundamental en múltiples campos. Con el continuo avance tecnológico y la continua evolución del mercado, su rendimiento y ámbito de aplicación se verán mejorados y ampliados.

2025/04/09
LEER MáS
El mágico "ojo en perspectiva" de la instrumentación de difracción de rayos X de escritorio

La instrumentación de difracción de rayos X de escritorio TDM-10 es un instrumento utilizado para analizar la estructura de fases de los materiales, que puede equiparse con detectores de matriz lineal/proporcional/de centelleo. 1. Principio de funcionamiento del instrumento de difracción de rayos X de escritorio TDM-10: Según la ley de Bragg, cuando un haz de rayos X monocromáticos incide sobre un cristal, si se cumple la condición de difracción de Bragg (n λ = 2d sen θ, donde λ es la longitud de onda de los rayos X, d es la separación interplanar y θ es el ángulo de incidencia), los átomos o moléculas del cristal se dispersarán e interferirán con los rayos X, formando un patrón de difracción específico. Midiendo la intensidad de difracción a diferentes ángulos, se puede obtener información estructural del cristal. 2. Características del instrumento de difracción de rayos X de escritorio TDM-10: La alta resolución de un instrumento de difracción de rayos X de escritorio permite una medición precisa de la estructura cristalina de las sustancias, lo cual es crucial para estudiar mezclas complejas o buscar fases traza y policristalinas de bajo contenido. Análisis no destructivo de instrumentación de difracción de rayos X de escritorio: durante el proceso de prueba, no causará daños a la muestra y la muestra puede permanecer en su estado original para futuras pruebas o usos. El funcionamiento del equipo de difracción de polvo de rayos X de escritorio es simple: los equipos de difracción de polvo de rayos X de escritorio modernos generalmente tienen funciones de automatización e inteligencia, lo que hace que la operación sea más conveniente y reduce los requisitos de conocimientos y habilidades profesionales del operador. La versatilidad del equipo de difracción de polvo de rayos X de escritorio: el equipo de difracción de polvo de rayos X puede realizar varios análisis, como análisis cualitativo y cuantitativo de fase, análisis de constante de red, análisis de tensión, etc. 3. Parámetros técnicos del equipo de difracción de polvo de rayos X de escritorio TDM-10: La máquina de difracción de rayos X de escritorio tiene un volumen pequeño; La fuente de alimentación de alta frecuencia y alto voltaje reduce el consumo general de energía de la máquina; Puede calibrar y probar muestras rápidamente; Control de circuito simple, fácil de depurar e instalar; La precisión de medición de la posición del pico de difracción es de 0,001°; Detector: centelleo, proporcional, matriz lineal; Rango de 2 θ: - 10° ~ 150° Potencia: 600W; Voltaje máximo: 40kV; Corriente máxima: 15mA; Tubos de rayos X: tubos cerámicos corrugados, tubos metalocerámicos, tubos de vidrio. 4. Áreas de aplicación del difractor de rayos X de sobremesa TDM-10: Ciencia de los materiales: se utiliza para estudiar la estructura cristalina, la composición de las fases, el tamaño del grano, la cristalinidad, etc. de metales, cerámicas, semiconductores y otros materiales, lo que ayuda a los científicos de materiales a comprender las propiedades y características de los materiales. En el campo de la química, la máquina de difracción de rayos X se puede utilizar en la industria de fabricación de catalizadores, cemento, productos farmacéuticos y otros productos para identificar fases en muestras desconocidas, así como para analizar cuantitativamente fases conocidas en muestras mixtas. Geología: Realización de análisis de fases en minerales, rocas, etc. para determinar su composición y estructura mineral. Ciencia ambiental: se utiliza para analizar la composición mineral y las formas de contaminantes en muestras ambientales como suelo y sedimentos. Industria alimentaria: detección de componentes cristalinos, aditivos, etc. en alimentos. La máquina de difracción de rayos X de escritorio TDM-10 es un potente instrumento analítico con un importante valor de aplicación en múltiples campos.

2025/04/08
LEER MáS
Un potente asistente para el análisis preciso de materiales

El difractómetro de rayos X de alta potencia TDM-20 (XRD de sobremesa) se utiliza principalmente para el análisis de fases de polvos, sólidos y materiales pastosos similares. El principio de difracción de rayos X se puede utilizar para análisis cualitativos o cuantitativos, análisis de la estructura cristalina y otros materiales policristalinos, como muestras de polvo y de metal. El XRD de sobremesa se utiliza ampliamente en industrias como la industrial, la agrícola, la de defensa nacional, la farmacéutica, la minera, la de seguridad alimentaria, la petrolera, la educativa y la investigación científica. 1. Características principales del difractómetro de rayos X de sobremesa TDM-20 (XRD de sobremesa): La carga del nuevo detector de matriz de alto rendimiento ha mejorado enormemente el rendimiento general del dispositivo, con un tamaño pequeño y peso ligero; Toda la máquina está integrada en el tamaño del escritorio (generalmente ≤ 1m³), ahorrando espacio y adecuada para pequeños laboratorios o entornos de enseñanza; La potencia de trabajo de la fuente de alimentación de alta frecuencia y alto voltaje puede alcanzar los 1600W; Análisis rápido, capaz de calibrar y probar muestras rápidamente; Mediante el uso de detectores de alto rendimiento (como detectores bidimensionales) y la optimización de la trayectoria óptica, el escaneo de la muestra se puede completar en unos minutos; Control de circuito simple, fácil de depurar e instalar; La repetibilidad del ángulo puede alcanzar 0,0001; Bajo consumo de energía y seguridad, utilizando tubos de rayos X de baja potencia (como ≤ 50W), equipados con protección radiológica múltiple, sin necesidad de salas de blindaje especiales; Fácil de usar, equipado con software de automatización, que admite operación con un solo clic, visualización de datos en tiempo real y comparación de bases de datos estándar (como ICDD PDF). 2. Escenarios de aplicación típicos del difractómetro de rayos X de sobremesa TDM-20 (XRD de sobremesa): Ciencia de los materiales del difractómetro de rayos X (XRD de sobremesa): Identificación rápida de la estructura cristalina y la composición de fases (como metales, cerámicas, polímeros). Ciencia de los materiales del difractómetro de rayos X (XRD de sobremesa): pruebas en sitios industriales de la pureza cristalina de materias primas o productos terminados (como productos farmacéuticos y materiales de baterías). Ciencia de los materiales del difractómetro de rayos X (XRD de sobremesa): enseñanza experimental de pregrado, demostración visual del principio de difracción de Bragg. Ciencia de los materiales del difractómetro de rayos X (XRD de sobremesa): análisis de la composición mineral de reliquias culturales o selección preliminar de muestras de campo. 3. Parámetros técnicos del difractómetro de rayos X de sobremesa TDM-20 (XRD de sobremesa): Proyecto: rango de parámetros Fuente de rayos X: objetivo de Cu (λ=1,54 Å), objetivo de Mo opcional Voltaje/corriente: 10-50 kV/0,1-2 mA Rango del instrumento de medición de ángulos: 0-90 ° 2θ (algunos modelos se pueden ampliar) Resolución angular: ≤ 0,01 ° Tipo de detector: detector de superficie lineal unidimensional o bidimensional Tamaño de la muestra: Polvo (miligramos), película o bloque 4. Ventajas y limitaciones del difractómetro de rayos X de sobremesa TDM-20 (XRD de sobremesa): Ventajas: Bajo costo (aproximadamente 1/3-1/2 del XRD grande), fácil mantenimiento. Admite análisis no destructivos y preparación de muestras sencilla (como colocar polvo directamente). limitaciones: La resolución y la sensibilidad son ligeramente inferiores a las de los dispositivos de alta gama y pueden no ser adecuadas para análisis estructurales ultrafinos. Las pruebas en condiciones extremas (como experimentos in situ a alta temperatura y alta presión) normalmente no son factibles.

2025/04/07
LEER MáS
Obtenga el último precio? Le responderemos lo antes posible (dentro de las 12 horas)
This field is required
This field is required
Required and valid email address
This field is required
This field is required