fondo

Noticias

Nuevo estándar para la inspección en la era de la Industria 4.0

Tubos cerámicos corrugados especiales, tubos metalocerámicos y tubos de vidrio para instrumentos analíticos, aptos para diversos modelos de XRD, XRF, analizadores de cristal e instrumentos de orientación, tanto nacionales como internacionales. Un tubo de rayos X es un dispositivo electrónico de vacío que genera rayos X mediante el impacto de electrones a alta velocidad sobre un material metálico. Su estructura, principio y aplicación implican diversas características técnicas. 1. Estructura básica del tubo de rayos X (1) Cátodo (fuente de emisión de electrones) Compuesto por un filamento de tungsteno, el tubo de rayos X se calienta y emite electrones tras encenderse. Está envuelto alrededor de una cubierta de enfoque (cabezal catódico) para controlar la dirección del haz de electrones. La temperatura del filamento es de aproximadamente 2000 K y la emisión de electrones se regula mediante corriente. (2) Ánodo (material objetivo) Generalmente, se utilizan metales con alto punto de fusión (como tungsteno, molibdeno, rodio, etc.) para resistir el bombardeo de electrones de alta energía y generar rayos X. Contiene cabeza de ánodo (superficie objetivo), tapa de ánodo, anillo de vidrio y mango de ánodo, responsables de la disipación de calor (por radiación o conducción) y la absorción de electrones secundarios. (3) Carcasa y ventana de vacío La carcasa de vidrio o cerámica mantiene un entorno de alto vacío (no menos de 10 ⁻⁴ Pa) para evitar la dispersión de electrones. Los materiales de las ventanas requieren una baja absorción de rayos X, por lo que suelen utilizarse láminas de berilio, aluminio o vidrio Lindemann. 2. Principio de funcionamiento del tubo de rayos X (1) Aceleración e impacto de electrones Los electrones emitidos por el filamento catódico se aceleran mediante alto voltaje (en el rango de kilovoltios a megavoltios) y colisionan con el material del ánodo. El proceso de conversión de energía cinética electrónica en rayos X incluye: Radiación de frenado: rayos X de espectro continuo que se liberan cuando los electrones se desaceleran o se desvían. Radiación característica: rayos X (como las líneas Kα y Kβ) liberados por las transiciones de electrones en la capa interna del material objetivo. (2) Conversión y eficiencia energética Sólo alrededor del 1% de la energía de los electrones se convierte en rayos X, y el resto se disipa en forma de calor, lo que requiere un enfriamiento forzado (como un diseño de ánodo giratorio). 3. Clasificación y escenarios de aplicación de los tubos de rayos X (1) Mediante la generación de medios electrónicos Tubo inflable: un tipo antiguo que se basa en la ionización de gas para generar electrones, con baja potencia y vida útil corta (ahora obsoleto). Tubo de vacío: el entorno de alto vacío convencional moderno mejora la estabilidad y la eficiencia electrónica. (2) Por finalidad En el campo médico, los tubos de rayos X de diagnóstico (como los exámenes dentales y de mama) y terapéuticos (como la radioterapia) a menudo utilizan ánodos giratorios para aumentar la densidad de potencia. Ensayos industriales: ensayos no destructivos, análisis de estructura de materiales, etc., con foco en alta penetración (rayos X duros). (3) Según el método de enfriamiento Ánodo fijo: estructura simple, adecuado para escenarios de bajo consumo. Ánodo giratorio: la superficie del objetivo gira a alta velocidad (hasta 10 000 revoluciones por minuto) para mejorar la disipación del calor y soportar una salida de alta potencia. 4. Características de rendimiento y limitaciones de los tubos de rayos X (1) Ventajas Económico, compacto y fácil de usar, ideal para pruebas médicas e industriales de rutina. Ajuste flexible de materiales objetivo (como tungsteno, molibdeno y cobre) para satisfacer diferentes necesidades energéticas. (2) Limitaciones Brillo y colimación deficientes, gran ángulo de divergencia de rayos X, lo que requiere colimadores adicionales. El espectro de energía es continuo y contiene líneas características, lo que requiere filtrado o monocromatización (por ejemplo, mediante el uso de filtros de níquel para eliminar las líneas Kβ). 5. Comparación entre tubos de rayos X y fuentes de radiación de sincrotrón (1) Brillo y flujo Tubo de rayos X: Bajo brillo, ideal para pruebas rutinarias. Fuente de luz de radiación de sincrotrón: con un brillo entre 106 y 1012 veces mayor, ideal para investigación de vanguardia como la nanoimagen y la cristalografía de proteínas. (2) Características espectrales Tubo de rayos X: líneas características discretas + espectro continuo, rango de energía limitado por el voltaje de aceleración. Radiación de sincrotrón: amplio espectro continuo (desde infrarrojos hasta rayos X duros), ajustable con precisión. (3) Características temporales Tubo de rayos X: Pulsos continuos o de nivel microsegundo (objetivo giratorio). Radiación sincrotrón: Pulsos de nivel femtosegundo, adecuados para estudiar procesos dinámicos como reacciones químicas. 6. Parámetros técnicos del tubo de rayos X (1) Tipos de materiales de destino opcionales: Cu, Co, Fe, Cr, Mo, Ti, W, etc. (2) Tipo de enfoque: 0,2 × 12 mm2 o 1 × 10 mm2 o 0,4 × 14 mm2 (enfoque fino) (3) Mayor potencia de salida: 2,4 kW o 2,7 kW En general, los tubos de rayos X predominan en campos como el diagnóstico médico y las pruebas industriales debido a su practicidad y economía, pero presentan limitaciones en su rendimiento. Para escenarios que requieren alta resolución y alto brillo (como la investigación científica de vanguardia), es necesario recurrir a tecnologías avanzadas como las fuentes de radiación de sincrotrón. Las futuras líneas de desarrollo incluyen la mejora de la eficiencia de conversión de energía, la optimización de las estructuras de disipación de calor y el desarrollo de fuentes de rayos X miniaturizadas.

2025/05/07
LEER MáS
Los secretos técnicos detrás del alto rendimiento

Tubos de rayos X diseñados específicamente para instrumentos analíticos: 1. Existen varios tipos de materiales objetivo: se pueden seleccionar diferentes materiales objetivo según las diferentes necesidades de análisis, como tungsteno, cobre, cobalto, hierro, cromo, molibdeno, titanio, etc. Estos materiales objetivo pueden generar rayos X con diferentes características para adaptarse al análisis de varias sustancias. 2. Tipos de enfoque enriquecido: existen varios tipos de enfoque para elegir, como el enfoque fino, que puede cumplir con los requisitos de prueba de diferentes resoluciones y precisiones. Por ejemplo, los puntos focales finos de 0,2 × 12 mm², 1 × 10 mm² o 0,4 × 14 mm² pueden ayudar a mejorar la precisión y exactitud del análisis. 3. Alta potencia de salida: una alta potencia de salida puede garantizar que el tubo de rayos X tenga suficiente energía para excitar la muestra durante el funcionamiento, obteniendo así resultados de análisis claros. La potencia de salida de algunos tubos de rayos X especializados puede alcanzar los 2,4 kW o 2,7 kW. 4. Materiales estructurales especiales: se utilizan tubos de cerámica corrugada, tubos de cerámica metálica, tubos de vidrio y otros materiales, que tienen buena resistencia a altas temperaturas, resistencia a la corrosión y resistencia a la radiación, lo que garantiza el funcionamiento estable de los tubos de rayos X en entornos de trabajo complejos. Al mismo tiempo, estos materiales también ayudan a mejorar el rendimiento de disipación de calor de los tubos de rayos X y a extender su vida útil. 5. Servicios personalizados: Los clientes pueden personalizar según sus necesidades específicas, incluido el diseño, la configuración y los materiales del ánodo del tubo de radiación, para cumplir con los requisitos de análisis específicos. 6. Alta confiabilidad: Los tubos de rayos X utilizados por Dandong Tongda Technology Co., Ltd. garantizan un suministro confiable de tubos de rayos X, lo que garantiza el suministro continuo de tubos de rayos X de alta calidad durante la vida útil del instrumento y reduce el tiempo de inactividad del instrumento causado por fallas en los tubos. 7. Ampliamente aplicable: adecuado para varios modelos de XRD (difractómetro de rayos X), XRF (espectrómetro de fluorescencia de rayos X), analizador de cristales, analizadores de orientación y otros instrumentos analíticos nacionales y extranjeros, así como campos industriales como pruebas no destructivas, inspección, medición, etc. En resumen, los tubos de rayos X diseñados específicamente para instrumentos analíticos tienen las características de diversos materiales objetivo, puntos focales ricos, alta potencia, materiales estructurales especiales, capacidad de personalización, alta confiabilidad y amplias aplicaciones. Estas características les permiten satisfacer las necesidades de análisis de diversas sustancias complejas y se utilizan ampliamente en la investigación científica, la industria y otros campos.

2024/10/25
LEER MáS
Parámetros técnicos del difractómetro de rayos X de la serie TD

Dandong Tongda Technology Co., Ltd. es una empresa profesional que produce productos de rayos X. Su producto principal son los instrumentos de análisis de rayos X y, en 2013, se convirtió en el responsable del proyecto de desarrollo de instrumentos y equipos científicos nacionales importantes, el instrumento especial de difracción de rayos X de cristal único del Ministerio de Ciencia y Tecnología de China. Nuestra empresa se adhiere a los principios de "el cliente primero, el producto primero y el servicio primero", insiste en la orientación a las personas y cuenta con un sólido equipo tecnológico. Nos comprometemos a proporcionar a los usuarios productos de alta tecnología de la más alta calidad con tecnología avanzada y a brindar un sólido soporte y servicios a los usuarios con instituciones de consultoría técnica y servicio posventa eficientes.

2024/09/21
LEER MáS
Obtenga el último precio? Le responderemos lo antes posible (dentro de las 12 horas)
This field is required
This field is required
Required and valid email address
This field is required
This field is required